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Abstract

Mutually-reactive, fluorogenic molecules are presented as a simple and novel technique for in-

solution biosensing. The hypothesis behind this work was that aggregating droplets into close 

proximity would cause rapid mixing of their contents. To take advantage of this effect, a novel pair 

of fluorogenic redox molecules were designed to remain in lipid-stabilized oil droplets but mix 

once aggregated. First, the hydrophobic cyanine dye DiI was reduced with sodium borohydride to 

form a non-fluorescent analog (HDiI). Hydrophobic quinone derivatives were then screened as 

oxidizing agents, and it was found that p-fluoranil oxidized non-fluorescent HDiI back to 

fluorescent DiI. Next, HDiI and p-fluoranil were loaded into NEOBEE oil nanodroplets of average 

diameter 600 nm that were stabilized by a monolayer of DPPC, DSPE-PEG, and DSPE-PEG-

biotin. Addition of streptavidin caused aggregation of droplets and the appearance of red 

fluorescent aggregates within 30 min. Next, Nanoparticle Tracking Analysis was used to record 

the fluorescence of the droplets and their aggregates. By integrating the fluorescence emission of 

the tracked droplets, streptavidin could be detected down to 100 fM. Finally, the droplets were 

reformulated to sense for Vascular Endothelial Growth Factor (VEGF), a biomarker for tumor 

metastasis. Using anti-VEGF aptamers attached to DSPE-PEG incorporated into the nanodroplet 

monolayer, VEGF could also be detected down to 100 fM.
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Introduction

Rapid, inexpensive detection of specific biomolecules is of tremendous importance for 

improving patient health, identifying infectious disease transmission patterns, and many 

other health-related goals. While ELISA is the gold standard of biomarker detection and 

quantification, its high cost and lengthy operation times inhibit wider utilization for routine 

assays. Detection of soluble analytes via sandwich assay has generally been achieved 

through the binding of an antibody bearing an additional moiety that can either serve as a 

label or amplify generation of detectable small molecules. In order to remove background 

signal, extensive washing steps are often required, increasing assay time and increasing the 

chances of operator error. A method that could provide a specific, detectable signal on a 

shorter time scale using inexpensive reagents would help to lower the barriers for more 

widespread assay development.

An alternative to a sandwich assay would be the generation of signal as a direct result of 

interaction with a specific biomarker in solution while minimizing background. Thus, signal 

must remain dark prior to mixing but become active once induced to do so during the 

detection phase. This method lends itself well to detection of enzymes that can naturally 

amplify activatable peptide-fluorophores.1–2 Molecular beacons have also been designed to 

modulate their fluorescence intensity in response to nucleic acid or aptamer-bound 

analytes.3–5 For more general analytes, aggregation is a highly customizable method of 

detection because it can be induced with antibodies. Examples include shifts in plasmon 

resonance for metal nanoparticles and antibody-tagged iron oxide nanoparticles that change 

their magnetic relaxivity upon aggregation.6–9 However, in each of these cases, background 

signal can hinder specificity. For example, typical molecular beacon quenching or energy 

transfer ON-OFF ratios are usually 5–30 (85–97% quenching/transfer efficiency).10–12 If 

instead the aggregation process were to cause the creation of signal rather than simply 

modulating it, a far greater specificity would be expected.

This paper presents an alternate strategy in which the aggregation of two oil droplets causes 

the mixing of two chemicals that react to produce an active fluorescent dye, thus creating 

fluorescence emission rather than shifting or modulating an existing signal. Previously, our 
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lab developed oil droplets that could be induced to fuse together and mix their contents via 

DNA-mediated interactions inspired by the SNARE complex.13–14 In the course of 

performing these studies, we found that simple aggregation could also allow contents to pass 

across the lipid monolayer, leading to content mixing even without fusion. Thus, droplets 

bearing reactive payloads could potentially be used as in-solution biosensors via analyte-

induced aggregation. In this work, this aggregation-based detection scheme was validated 

against streptavidin as a model analyte and against VEGF-165 as a biomarker for metastatic 

cancer.

Results and Discussion

Synthesis and Evaluation of Cyanine-based Switchable Fluorophore

To obtain efficient and rapid signal generation, redox reactions were chosen as a method of 

activation that could be made specific to droplet aggregation with some simple design rules. 

Redox reactions leading to unmasking of fluorescent dyes has been a highly successful 

approach for the sensing of Reactive Oxygen Species (ROS).15–20 We theorized that the 

same effect might be obtained using oil-soluble oxidants. For the dye structure, we were 

directly inspired by hydride-reduced cyanine dyes developed by Murthy and coworkers21–22 

and Nagano and coworkers.23 Here, 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine 

perchlorate (DiI), a common membrane stain based on Cy5, was used instead because of its 

strong partitioning to an oil phase due to its two C18 chains. Reduced DiI (HDiI) was 

prepared by reacting with sodium borohydride in ethanol, followed by extraction and 

filtration through a silica plug (Figure 1A).21–22 The resulting molecule was completely 

colorless and easily dispersible in different organic solvents (Figure 1B).

Next, the expected dye reactivation studies were tested in bulk. Initial studies showed that 

vegetable oils provided greater droplet stability than small molecule oils with less optical 

interference (data not shown). Thus, soybean oil and NEOBEE oil, a triglyceride extract of 

coconut oil, were examined as potential oil phases. For reagents, quinones were screened 

due to their oxidative reactivity and because many derivatives can be found as oil-soluble 

reagents. To screen reagents, equimolar amounts of HDiI and hydrophobic quinones were 

mixed in NEOBEE oil for 5 min, followed by recording of fluorescence emission spectra 

(λexc = 532 nm) (Figure 2A). Surprisingly, only some of the quinones reoxidized the HDiI 

effectively. Quinones with electron donating groups and additional ring structures such as 

1,4-dihydroxyanthraquinone, 9,10-phenanthrenequinone, and 3,3′,5,5′-tetra-tert-

butyldiphenoquinone yielded no appreciable change as compared to HDiI. All three 

benzoquinones with electron-withdrawing groups tested -- p-fluoranil (tetrafluoro-1,4-

benzoquinone), p-chloranil, and DDQ -- yielded increase in signal, with p-fluoranil as the 

best, which also corresponded with the quinone possessing the highest oxidation potential.24 

Further optimization of p-fluoranil loading indicated that a 1:4 molar ratio of HDiI:p-

fluoranil provided the greatest increase in fluorescence (51%); this formulation was utilized 

for all subsequent experiments (Figure 2B). To confirm that reaction proceeded as 

intended, 1H-NMR spectra were obtained of commercial DiI alone, HDiI alone, and 1:4 

HDiI:p-fluoranil. The spectra show that mixing HDiI and p-fluoranil results in a clear 

reappearance of the original peaks found in the commercial DiI sample, albeit with some 
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broadening (Figure S1). The formation of DiI was confirmed by both 1H-NMR spectra and 

ESI-MS (see Supporting Information). The incomplete recovery of fluorescence is thus most 

likely due to side bleaching reactions caused by the presence of strong oxidizers. In addition, 

mixtures of HDiI and p-fluoranil did not fluoresce as strongly in soybean oil, possibly due to 

side reaction between the unsaturated tails in the oil and the p-fluoranil (Figure S2).

Nanodroplet Formulation and Aggregation

For proof-of-concept sensing experiments, nanodroplets containing either HDiI or p-

fluoranil in NEOBEE oil were stabilized by a monolayer of lipid and polymer-lipids 

containing biotin (Figure 3A). Addition of streptavidin to these biotin-containing droplets 

would cause the formation of aggregates and activation of fluorescence (Figure 3B). To 

make the droplets, a lipid film containing DPPC, DSPE-PEG2000, and DSPE-PEG2000-

Biotin was first hydrated in Tris Buffered Saline (TBS) to form liposomes. To this, a 4 v/v% 

solution of NEOBEE oil containing either HDiI or p-fluoranil was added, and the mixture 

was probe sonicated to obtain an emulsion suspension, which was then centrifuged through a 

0.45 μm filter to reduce size polydispersity. Measurements by Nanoparticle Tracking 

Analysis (NTA) determined both the concentration and the size (mean diameter 575.5 

± 203.5 nm) of the nanodroplets (Figure S3).25 To show that aggregation led to fluorescence 

activation, equal concentrations of droplets were mixed with varying concentrations of 

streptavidin and the resultant aggregates were imaged by fluorescence microscopy. For 

mixed droplets without streptavidin, a small amount of signal was observed by microscopy 

(Figure 3C). However, addition of 25 nM (Figure 3D) and 1 μM (Figure 3E) streptavidin 

caused the formation of aggregates that were clearly visible by fluorescence microscopy. 

Since increased fluorescence should primarily arise from mixing of reagents, one question is 

the mechanism by which the reagents encounter one another. While small amounts of 

droplet fusion are certainly possible, the appearance of some signal in the absence of 

streptavidin – and hence, aggregation – indicates that the internal phase may diffuse through 

one monolayer and into another droplet. Thus, while the probability of a molecule diffusing 

out of one droplet and into another is much higher when the droplets are aggregated, a small 

amount of reagent, probably p-fluoranil rather than HDiI, is likely able to diffuse through the 

aqueous media as well. Nevertheless, the fluorescent signal is clearly greater for aggregated 

droplets than unaggregated as a direct result of streptavidin addition.

Sensing of Streptavidin via Droplet Association

Studies were performed to illustrate the ability of this system to perform biosensing. One 

complication was that the nanodroplets scatter light, which interfered with bulk fluorescence 

measurements. However, a method that could specifically select fluorescent droplets would 

be able to overcome this limitation. The NTA instrument records video of particle 

suspensions, records Brownian motion of the particles, and calculates particle size via the 

Stokes-Einstein equation (Figure S4). By irradiating the particles at 532 nm and applying a 

red fluorescence emission filter, the NTA could specifically select for droplets that contained 

red fluorescence only, thereby reducing background from non-fluorescent droplets. No 

additional thresholding was necessary.
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In a typical experiment, suspensions of HDiI droplets and p-fluoranil droplets were 

combined as above with a series of streptavidin concentrations from 100 fM-25 nM at 37°C 

for 30 min. Droplets were then excited at 532 nm while monitoring their motion and 

fluorescence emission for 60 s, thus both recording droplet diffusivity and fluorescence 

intensity simultaneously. The emission of each fluorescent droplet was integrated over the 

60 s of video acquisition (example stills in Figure S4). The resultant scatter-plots show that 

droplet samples containing streptavidin have larger sizes and fluorescence intensities than 

those without (Figure 4A–B, Figure S5). To quantify the relative responses between the 

samples, the integration of intensities of all fluorescent droplets and aggregates detected by 

the NTA was plotted as a function of streptavidin concentration (Figure 4C). This method 

showed a clear differentiation between the integrated signals between the control sample and 

an analyte concentration as low as 100 fM. At this concentration and the others tested the p-

value for a one-tailed t-test was < 0.05. Interestingly, the dynamic range of this study also 

has a theoretical upper limit as defined by the size of the resultant aggregates. As shown in 

our previous work with fluorocarbon droplets, above a certain streptavidin concentration 

droplets tend to form higher order aggregates rather than smaller clusters, but their slow 

diffusion restricts the maximum detectable size to 2 μm.26

As discussed above, the background signal in the absence of streptavidin was probably 

caused due to some amount of diffusion of the p-fluoranil first into the aqueous solution and 

then into a HDiI-loaded droplet. To measure the effect of this process on background signal 

generation, HDiI and p-fluoranil loaded droplets were incubated at 37°C and the resulting 

response was measured by NTA. As expected, simply mixing the droplets caused some 

increase in integrated signal over time, but the signal reached only to a level corresponding 

to close to 1 pM streptavidin even after 2 hrs of agitation (Figure 5A). Another potential 

complication was sensing capability in more complex media. HDiI and p-fluoranil loaded 

droplets were incubated with and without 1 nM streptavidin in either 50% Fetal Bovine 

Serum (FBS) and in 50% Sodium Citrate-stabilized bovine plasma. Based on the response, 

streptavidin-mediated aggregation clearly occurred in both FBS and plasma (Figure 5B). 

Little change was observed for the samples without streptavidin, supporting the specificity 

of response and the stability of the HDiI to complex media. For samples with streptavidin, 

signal was overall less intense and more variable for serum and plasma than for buffer, 

which indicates that specificity of sensing is governed by the analyte capture agents (e.g. 

aptamers and antibodies) rather than the droplets themselves. For comparison, previous 

research in our labs showed that fluorocarbon droplets with similar lipid compositions 

showed little nonspecific activation by off-target analytes.26 Most likely, the serum proteins 

bind nonspecifically to the lipid shell, reducing diffusion of p-fluoranil from the droplets. 

Another possibility is the consumption of p-fluoranil via side reaction with a serum protein, 

which has been observed previously.27–28 Nevertheless, the presence of complex media only 

reduces overall signal by about 25%.

Aptamer-VEGF binding and Droplet Aggregation

To validate the nanodroplet sensors with a more biomedically relevant analyte, we next 

reformulated the droplets to sense for Vascular Endothelial Growth Factor A (VEGF). 

VEGF has been sensed previously using ELISA, microfluidic chips, and microarray 
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techniques.29–32 The crystal structure has shown that VEGF exists as an antiparallel 

homodimer, and thus containing two binding sites that will allow association of droplets on 

other side of the dimer.33 While VEGF antibodies are commercially available, we sought to 

decrease the distance between bound droplets by using VEGF aptamers, thereby improving 

content transfer.34, 35 The reported anti-VEGF aptamer was utilized here with the following 

modifications: (1) both 5′-CCC and GGG-3′ were incorporated at the termini to stabilize 

the folded conformation for improved association,34, 35 (2) an additional 5′-TTTT spacer to 

provide flexibility for binding to VEGF dimer, and (3) the 5′ end was thiolated for 

conjugation (see Experimental for full sequence). The thiolated anti-VEGF aptamer was 

then reacted with DSPE-PEG2000-Maleimide in the presence of Tris(2-

carboxyethyl)phosphine hydrochloride) (TCEP) to allow incorporation of the aptamer into 

the droplet monolayer as a conjugate (DSPE-PEG2000-Mal-Apt).

In-solution detection of VEGF dimer was performed analogously to the streptavidin sensing 

studies. Nanodroplets loaded with HDiI and p-fluoranil were formulated using a lipid-PEG 

stock solution, but with the DSPE-PEG2000-Mal-Apt in place of the DSPE-PEG2000-

Biotin. Fluorescence microscopy images of these droplets without and with 100 nM VEGF 

are shown in Figure 6A and Figure 6B respectively. As with streptavidin, aggregation of 

droplets led to mixing of HDiI and p-fluoranil diffusion through the droplet monolayers, 

generating a fluorescence signal. In the absence of VEGF, apparent fluorescence was low by 

microscopy (Figure 6A). Next, HDiI and p-fluoranil droplets were incubated with varying 

concentrations of VEGF in TBS to determine a dose response trend. NTA was once again 

performed on the droplets under a 532 nm excitation laser through a fluorescence filter. A 

similar trend of integrated signal vs. analyte concentration was observed as for streptavidin 

(Figure 6C). The integrated signal leveled at higher concentrations, probably due to 

formation of larger aggregates and the limitation of NTA to detect aggregates greater than 2 

μm in size as described above. Without VEGF there was more background signal than for 

streptavidin, possibly due to increased non-specific aggregation caused by non-

complementary association of aptamer strands. However, these results show that VEGF-165 

homodimers can be detected by this technique down to 100 fM (~ 4 pg/mL), with the 

greatest dynamic range between 100 fM to 10 pM (~400 pg/mL). These levels correspond 

well with an ability to differentiate serum VEGF levels from normal baseline (150 pg/mL) to 

elevated levels associated with metastatic breast cancer (320 pg/mL).32 For comparison, 

commercial ELISA assays such as the Human VEGF Immunoassay (R&D Systems) are able 

to obtain greater difference in signal between these levels and with a linear signal-

concentration dependence. However, the reported fluorogenic system is able to obtain results 

within 30 min as compared to >4 h for solid-phase ELISA assays such as these (R&D 

Systems). Interestingly, the detection limit for VEGF-165 was similar to that of streptavidin, 

even though the dissociation constants of VEGF-165/aptamer and streptavidin/biotin are 

quite different (~50 nM34 and 10 fM, respectively). We attribute this finding to diffusion of 

p-fluoranil from the droplets, which generates background signal that reduces sensitivity for 

the streptavidin/biotin assay. Future studies will thus focus on designing other reactive pairs 

that will partition more effectively into the droplets with the aim of reducing background 

and improving limit of detection.
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Conclusion

In summary, a novel fluorogenic system was developed as an in-solution biosensor. Oil-

soluble DiI, a hydrophobic cyanine derivative, was reduced into a non-fluorescent molecule. 

A series of quinones were found to be able to partially restore the reduced DiI to 

fluorescence. Biosensing was performed by placing HDiI and p-fluoranil in separate 

biotinylated droplets, followed by addition of varying concentrations of streptavidin. Droplet 

aggregates were found to become fluorescent as observed by microscopy. By counting the 

total fluorescence of the droplets by Nanoparticle Tracking Analysis, streptavidin could be 

sensed down to 100 fM. The background oxidation of the HDiI was found to be slow enough 

to allow detection in 30 min, and the signal was found to activation with about 25% less 

activity in serum and plasma. Finally, this same system was able to detect Vascular 

Endothelial Growth Factor A down to 100 fM using aptamer-analyte interactions. In future 

studies, the work described here will be expanded to sense for more complex analytes via 

antibody interactions.

EXPERIMENTAL SECTION

General information

Fluorimetry studies were performed on a Photon Technology International fluorimeter with 

lamp power supply model LPS-220B, motor driver model MD-5020, and shutter control 

model SC-500. 1H-NMR studies were performed on a Bruker AV-III 400 MHz NMR 

spectrometer with ICON NMR in automation, while 13C NMR studies were run at 100 

MHz. CDCl3 was used as solvent, chemical shifts are reported in ppm, while coupling 

constants, J, are reported in Hertz. Multiplicities in the spectra are represented by d 

(doublet), t (triplet), m (multiplet), and b (broad). High-resolution mass spectra (HRMS) 

were recorded using a Waters Synapt G2; spectra are reported as m/z (relative intensity). 1 

μL of saturated LiCl in acetonitrile was added to 50 μL of sample, masses are reported for 

either [M+] or [M+H+] ion. Millipore water was obtained from a Milli-Q Advantage A-10 

water purification system (MilliPore, USA). Microscopy images were captured using a Zeiss 

Axio Imager A2. Nanoparticle Tracking Analysis was performed on a Malvern NanoSight 

LM10.

Synthesis of reduced dye

2.5 mg (2.1 μmol) of 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate 

(DiIC18(3), Molecular Probes) was dissolved in 1 mL 200 proof ethanol. 0.24 mg (6.3 μmol) 

of sodium borohydride (Acros Organics) in 100 μL in ethanol was added dropwise to the DiI 

solution with continuous stirring, followed by another 5–10 min stirring at RT to make a 

colorless solution. The ethanol was removed by rotary evaporator, followed by addition of 3 

mL of chloroform. The chloroform was washed twice with 1 mL Millipore water and once 

with 1 mL brine, followed by drying over anhydrous magnesium sulfate, filtering through 

silica, and concentration by rotary evaporator. For storage, 1 mL of NEOBEE oil (Spectrum 

Chemical Mfg. Corp.) or soybean oil (MP Biomedicals, LLC) was then added to the flask 

and mixed in the rotary evaporator without vacuum for 10 min. The solution of reduced DiI 

in oil was stored in a glass vial wrapped with aluminum foil at 2–8 °C. 1H NMR (400 MHz, 

CDCl3): δ 7.17-7.07 (m, 4H, Ar-H), 7.03-7.01 (m, 2H, Ar-H), 6.83-6.75 (m, 2H, Ar-H), 
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6.68 (t, 1H, -CH=CH-CH=, J = 7.3 Hz), 6.55 (d, 1H, -CH=CH-CH=, J = 7.8 Hz) 6.47 (d, 

1H, -CH=CH-CH=, J = 7.7 Hz), 5.41-5.32 (m, 2H, -CH=CH-CH=), 3.80-3.55 (m, 2H, N-

CH2-CH2), 3.22-2.99 (m, 2H, N-CH2-CH2), 1.95-0.85 (82H, aliphatic region); 13C NMR 

(100 MHz, CDCl3): δ 154.34, 150.34, 145.29, 139.09, 138.59, 130.27, 127.58, 127.27, 

121.68, 121.57, 121.40, 118.54, 116.98, 106.73, 105.48, 94.81, 78.42, 45.69, 45.03, 44.08, 

42.26, 31.94, 29.71, 29.68, 29.63, 29.56, 29.48, 29.37, 28.33, 28.07, 27.40, 27.23, 26.31, 

25.96, 25.89, 24.14, 22.70, 14.13. HRMS (ESI+) for C59H98N2 [M+H+]: calculated: 

835.7808, experimental: 835.7792.

Activation studies of reduced dye

The following quinones were used for re-oxidation studies: p-fluoranil (Alfa Aesar), p-

chloranil (Merck KGaA), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, Acros 

Organics), 1,4-dihydroxyanthraquinone, (DHAQ, Acros Organics), 9,10-

phenanthrenequinone (Chem-Impex Int’l Inc.), and 3,3′,5,5′-tetra-tert-butyldiphenoquinone 

(DPQ, TCI Co., Ltd.). For each study, a 2.14 mM solution of each of these reagents was 

made in NEOBEE oil to match the ~2.14 mM solution of HDiI in NEOBEE oil. Equal 

volumes of reduced DiI and the respective oxidizing agent were mixed for 5 min. Next, each 

solution was diluted 2000X in NEOBEE oil, and fluorescence measurements were recorded 

(λexc = 532 nm). Analogous experiments were also performed in soybean oil for HDiI and 

p-fluoranil. The fluorescence spectra of 1.07 mM solution of commercial DiI and HDiI 

alone were taken as a positive and negative control, respectively. Since a 1:4 molar ratio of 

reduced DiI:p-fluoranil proved optimal, NMR spectra for the reactivated DiI was recorded 

using this ratio. 1H-NMR (400MHz, CDCl3): δ 8.42 (b, 1H, -CH=CH-CH=), 7.39 (b, 2H, 

Ar-H), 7.27 (b, 2H, -CH=CH-CH=), 7.14 (b, 1H, Ar-H), 6.85 (b, 1H, Ar-H), 4.18 (b, 4H, N-

CH2-CH2-), 1.88-0.85 (82H, aliphatic region); 13C NMR (100 MHz, CDCl3): δ 173.98, 

142.14, 140.63, 128.87, 125.42, 122.13, 111.07, 103.36, 53.43, 49.16, 44.54, 31.93, 29.71, 

29.66, 29.62, 29.46, 29.43, 29.37, 28.06, 27.53, 26.79, 22.69, 14.12. HRMS (ESI+) for 

C59H97N2 [M+]: calculated: 833.7652, experimental: 833.7659.

Synthesis of anti-VEGF aptamer-maleimide conjugate

Prior to all experiments, Tris-buffered saline (TBS) was prepared to a final concentration of 

10 nM Tris base (Fisher Scientific) and 100 mM NaCl (Fisher Scientific), adjusted to a pH 

of 7.4 with dilute HCl. A di-thiol modified version of an anti-VEGF aptamer (5′-/

5ThioMC6-D/TTTTCCCGTCTTCCAGACAAGAGTGCAGGG-3′) was purchased from 

Integrated DNA Technologies. Modifying a literature procedure,36 100 μL of a 100 μM 

aptamer stock solution was mixed with 100 μL of 10mM aqueous solution (pH adjusted to 

7.4) of Tris(2-carboxyethyl) phosphine hydrochloride (TCEP, Strem Chemicals Inc.), and 

reacted at 350rpm for 45 mins. Purification was carried out through a centrifugal filter 

(MWCO 3000 Da) at 4000 rcf for 20 mins, followed by washing twice with milipore water. 

100 μL of the re-suspended final product containing the activated aptamer was mixed with 

250 μL of a 2mg/mL DSPE-PEG2000-Maleimide (Avanti Polar Lipids, Inc.) solution in 1x 

PBS (Fisher Scientific), and reacted at 75°C for 1 hr. The product solution was then 

centrifuged under the same conditions mentioned previously, followed by washing in water, 

and then in TBS. The aptamer-maleimide product was re-suspended in TBS to form a final 

aptamer concentration of 100 μM.
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Formulation of nanodroplets

For droplet formulation, a stock solution of DPPC (Avanti Polar Lipids, Inc.) was prepared 

as described previously.2 DSPE-PEG2000 and DPSE-PEG2000-Biotin (both from Avanti 

Polar Lipids, Inc.) were individually dissolved in TBS and added to the stock DPPC solution 

to make a final concentration of 1.3 mM DPPC/40 μM DSPE-PEG2000/15 μM DSPE-

PEG2000-Biotin. To make anti-VEGF aptamer coated nanodroplets, DSPE-PEG2000-Biotin 

was replaced by the aptamer-maleimide conjugate to a final concentration of 150 nM. This 

lipid-PEG-biotin (or lipid-PEG-aptamer) mixture was then stirred at 75°C for 30–40 min 

and allowed to cool to RT. Two NEOBEE oil solutions were prepared: one with 2.14 mM 

HDiI (A), and one with 8.56 mM p-fluoranil (B). 40 μL of either solution A or solution B 
was added per mL of the lipid-PEG-biotin (or lipid-PEG-aptamer) stock to make a 4 v/v% 

mixture, and probe-sonicated (Branson SLPe, 40 kHz) for two 1min cycles – 1s on, 9s off – 

at 70% amplitude. The emulsion was then centrifuged at 1500 g for 1 min, followed by 

drawing ~0.5 mL of the supernatant, making sure to avoid the pellet at the bottom and the 

flotsam on top; the supernatant was then centrifuged using a 0.45 μm centrifugal filter 

(VWR International) at 12,000 g for 4.5 min, followed by washing with TBS under the same 

conditions. The droplet pellet in the filter was resuspended in 150 μL TBS per mL emulsion 

centrifuged. Plain NEOBEE oil droplets (without either dye or p-fluoranil) were also 

prepared in the same way for characterizing droplet size distribution. Droplet size 

distribution and concentration was measured by NTA.

Aggregation of nanodroplets

Stock analyte solutions of streptavidin (Pierce) of varying concentrations were prepared in 

TBS (or HyClone-characterized Fetal Bovine Serum (FBS) or Bovine Plasma (Sodium 

Citrate) as required; FBS and Bovine Plasma were purchased from ThermoFisher Scientific 

and Pel-Freez Biologicals respectively). Stock solutions of Human VEGF-165 (Shenandoah 

Biotechnology Inc.) were also prepared in TBS. Next, 10 μL (or approximately 7.5x109 

droplets, as determined by NTA) each of HDiI and p-fluoranil droplets in TBS were mixed 

together. Additional 30 μL TBS was added, followed by 50 μL of an appropriate analyte 

stock solution to attain the analyte concentrations mentioned in the text and a total volume to 

100 μL. (Biotinylated droplets were incubated with streptavidin, while aptamer-coated 

droplets were incubated with VEGF dimer) The mixture was shaken in a thermomixer 

(Eppendorf) at 37°C for 30 min. The samples were then imaged in epifluorescence mode in 

a red channel (Zeiss). 10 μL of each sample was taken and diluted to 1 mL in TBS for NTA 

characterization. For time-dependent studies of biotinylated droplet sample in the absence of 

streptavidin (Control), 10 μL of the same sample was characterized using the NTA setup 

after 0, 15, 30, 60, and 120 min after mixing and incubation.

Nanoparticle Tracking Analysis and fluorescence studies

Size distribution and concentration of NEOBEE oil droplets were determined using 

Nanoparticle Tracking Analysis. To determine fluorescent intensity of aggregated versus 

non-aggregated droplets, a push-pull fluorescence filter in the NanoSight setup was used, 

which allowed for visualization of fluorescent droplets/aggregates only, eliminating 

contribution to the response from the rest. Three 60 s videos were recorded for each sample: 
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in order to compare samples, criteria such as camera exposure level (maximum, at 16) and 

threshold detection level (18) were kept same for all experiments. The intensity vs. size data 

was analyzed by the NTA 3.0 software (Malvern). P-values were obtained using a one-tailed 

Student’s t-test against the null hypothesis that the means were equal. Calculated values are 

given in Figure S6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DiI 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine 

perchlorate

HDiI DiI reduced with NaBH4

p-Fluoranil tetrafluoro-1,4-benzoquinone

p-Chloranil tetrachloro-1,4-benzoquinone

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DHAQ 1,4-Dihydroxyanthraquinone

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPQ 3,3′,5,5′-tetra-tertbutyldiphenoquinone

DSPE-PEG2000 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[amino(polyethylene glycol)-2000]

DSPE-PEG2000-Biotin 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[biotinyl(polyethylene glycol)-2000]
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Figure 1. 
A: Scheme of reduction of DiI by NaBH4 and reactivation by oxidants. B: HDiI (right) and 

HDiI reactivated with 1 molar equivalent of p-fluoranil (left) in NEOBEE oil.
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Figure 2. 
Fluorescence emission spectra (λexc = 532 nm) of mixtures of HDiI and various oxidants. A: 

Spectra of 1:1 mixtures of HDiI and p-fluoranil (red), p-chloranil (orange), DDQ (light 

blue), DHAQ (light green), 9,10-phenanthrenequinone (light red), DPQ (dark green), and 

HDiI only (dark blue); the latter four are shown magnified in the inset. B: Commercial DiI 

only (black), 1:4 HDiI:p-fluoranil (dark red), and HDiI only (blue).
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Figure 3. 
A: Schematic of droplet structure. B: Schematic of nanodroplet composition and aggregation 

scheme. C–E: False-colored fluorescence microscopy images of mixed HDiI droplets and p-

fluoranil droplets with 0 (C), 25 nM (D), and 1 μM (E) streptavidin. Scale bar: 5 μm
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Figure 4. 
A–B: Representative NTA fluorescence scatter plots of biotinylated HDiI droplets and p-

fluoranil droplets mixed without (black diamonds) or with (orange squares) a respective 

concentration of streptavidin (A: 100 fM; B: 25 nM); C: Dose response of mixed HDiI 

droplets and p-fluoranil droplets as a function of streptavidin concentration. Integrated 

intensity is the summation of intensity of each detected droplet aggregate. Error bars 

represent standard deviation of at least three trials. *p<0.05, **p<0.005 as compared to 

sample without streptavidin.
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Figure 5. 
A: Time-dependent response of mixed biotinylated HDiI droplets and p-fluoranil droplets in 

the absence of streptavidin. B: Response of the mixed droplets without (red) or with (blue) 1 

nM streptavidin in TBS, 50% FBS, or 50% Bovine Plasma. *p<0.05, **p<0.005 as 

compared to sample without streptavidin.
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Figure 6. 
A–B: False-colored fluorescence microscopy images of anti-VEGF aptamer coated mixed 

HDiI droplets and p-fluoranil droplets incubated with 0 (A) and 100 nM (B) VEGF-165. 

Scale bar: 5 μm; C: Dose response of the mixed droplets as a function of VEGF-165 

concentration. *P<0.05, **P<0.005, ***P<0.0005, Student’s t-test compared to sample 

without VEGF.
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